Publications des agents du Cirad


Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field

Vaast P., Angrand J., Franck N., Dauzat J., Génard M.. 2005. Tree Physiology, 25 (6) : p. 753-760.

Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly de-creased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (Pn) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher Pn than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf Pn inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf Pn was significantly higher in the morning than later during the day. This reduction in leaf Pn is generally attributed to stomata] closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf Pn were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO2 emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 [mu]mol m-2 s-1). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon requirements at PPF values commonly experienced in the field (200 to 500 [mu]mol m-2 s-1). (Résumé d'auteur)

Mots-clés : croissance; carbone; photosynthèse; coffea arabica

Thématique : Physiologie végétale : croissance et développement; Anatomie et morphologie des plantes; Physiologie végétale : nutrition

Article de revue

Agents Cirad, auteurs de cette publication :