Publications des agents du Cirad

Cirad

Generalization of the partitioning of shannon diversity

Marcon E., Scotti I., Hérault B., Rossi V., Lang G.. 2014. PloS One, 9 (2) : 8 p..

Traditional measures of diversity, namely the number of species as well as Simpson's and Shannon's indices, are particular cases of Tsallis entropy. Entropy decomposition, i.e. decomposing gamma entropy into alpha and beta components, has been previously derived in the literature. We propose a generalization of the additive decomposition of Shannon entropy applied to Tsallis entropy. We obtain a self-contained definition of beta entropy as the information gain brought by the knowledge of each community composition. We propose a correction of the estimation bias allowing to estimate alpha, beta and gamma entropy from the data and eventually convert them into true diversity. We advocate additive decomposition in complement of multiplicative partitioning to allow robust estimation of biodiversity. (Résumé d'auteur)

Mots-clés : Étude de cas; forêt tropicale humide; espèce; modèle mathématique; mesure; biodiversité; guyane française

Thématique : Conservation de la nature et ressources foncières; Ecologie végétale; Méthodes mathématiques et statistiques

Documents associés

Article de revue

Agents Cirad, auteurs de cette publication :