Publications des agents du Cirad

Cirad

Production and evaluation of transgenic sorghum for resistance to stem borer

Visarada K.B.R.S., Padmaja P.G., Saikishore N., Pashupatinah E., Royer M., Seetharama N., Patil J.V.. 2014. In Vitro Cellular and Developmental Biology. Plant, 50 (2) : p. 176-189.

DOI: 10.1007/s11627-013-9561-5

Transgenic sorghum plants were produced through particle bombardment and Agrobacterium methods in two elite, but recalcitrant genotypes of Sorghum bicolor L. Moench. Use of target cells from developing tissues (immature embryos and multiple shoot buds), pre-culture of target tissue, small size of target tissue (2-3 mm), and regular subculture improved the selection and regeneration efficiencies. Addition of amino acid l-cysteine during co-cultivation and blotting sheet interface was helpful for complete decontamination of Agrobacterium tumefaciens and regeneration of transgenic plants. We demonstrated production of transgenic sorghum plants expressing a Bacillus thuringiensis lepidopteran toxin, through tailored in vitro protocols. Our results showed that decontamination of agrobacteria employing subtle treatments aided recovery of transgenic plants in recalcitrant genotypes. We generated 14 independent transgenic lines carrying different classes of B. thuringiensis toxin genes, cry1Aa and cry1B. Many single copy events were generated in two elite parental lines, CS3541 and 296B. Accumulation of the B. thuringiensis protein in leaves during the susceptible period of plant growth ranged from 35 to 500 ng/g fresh leaf tissue. Comprehensive insect bioassays for tolerance to spotted stem borer (Chilo partellus) were conducted through leaf disk and whole plant assays. Transgenic progeny plants showed 20-30% of damage as compared to 70-80% in non-transformed controls.

Mots-clés : sorghum bicolor; plante transgénique; résistance aux organismes nuisibles; cystéine; biopesticide; protéine bactérienne; hybride; agrobacterium tumefaciens; transformation génétique; contrôle continu; chilo partellus; tolérance aux ravageurs; bacillus thuringiensis; france; inde

Documents associés

Article (a-revue à facteur d'impact)

Agents Cirad, auteurs de cette publication :