Publications des agents du Cirad

Cirad

What structural plant modelling and image-based phenotyping can learn from each other?

Fournier C., Artzet S., Tardieu F., Pradal C.. 2020. In : Kahlen Katrin (ed.), Chen Tsu-Wei (ed.), Fricke Andreas (ed.), Stützel Hartmut (ed.). Book of abstracts of the 9th International Conference on Functional-Structural Plant Models: FSPM2020, 5 - 9 October 2020. Hanovre : Institute of Horticultural Production Systems, p. 55-56. International Conference on Functional-Structural Plant Models (FSPM 2020), 2020-10-05/2020-10-09, (Allemagne).

Introduction - High throughput phenotyping technologies have spread rapidly in the recent years to meet the demand for phenotyping of large panels of plants, covering a large genetic diversity and a large range of environmental conditions. Image-based technology, which allows following the architectural development of plant over time, is among the most popular, due to its simplicity, to a high degree of automation of the acquisition process, and to the richness of the information acquired. The automation of the analysis process is also actively developing (Ubbens et al., 2020), which offers unprecedentedly large and detailed dataset for plant modelling and for the development of new applications. Linking phenomics and crop modelling allows for example already to integrate the genetic variability of responses of plants to the environment, and to reason which combination of alleles is desirable for different pedo-climatic conditions, for present and future climate (Tardieu et al, 2017). By design, crop models however do not capture in details the architectural development of plants, that is the core data produced by image based phenomics. Using and adapting structural (functional) plant models for the analysis of such data will potentially minimise the loss of information, improve the modelling at fine scale and provide simulation tools that can be used as new source of information for crop modelling. Our objective is to experiment such a coupling for maize architectural development, and discuss how it may affect modelling and phenotyping. Materials and Methods - Multi-view images from a large phenotyping experiment (1600 plants, 40 days) performed on the PhenoArch platform https://www6.montpellier.inra.fr/lepse/M3P/PHENOARCH) are analysed with the Phenomenal image analysis pipeline (Artzet et al., 2019), which generates, for each plant, a sequence of 3D reconstructions at different stages of development (Figure 1A). Phenomenal also allow to segment the plant into sma

Documents associés

Communication de congrès

Agents Cirad, auteurs de cette publication :