Publications des agents du Cirad

Cirad

Molecular detection and quantification of Xanthomonas albilineans in juice from symptomless sugarcane stalks using a real-time quantitative PCR assay

Shi Y., Zhao J.Y., Zhou J.R., Ntambo M.S., Xu P.Y., Rott P., Cao S.J.. 2021. Plant Disease, 105 (11) : p. 3451-3458.

DOI: 10.1094/PDIS-03-21-0468-RE

Leaf scald, a bacterial disease caused by Xanthomonas albilineans (Ashby) Dowson, is a major limiting factor for sugarcane production worldwide. Accurate identification and quantification of X. albilineans is a prerequisite for successful management of this disease. A sensitive and robust quantitative PCR (qPCR) assay was developed in this study for detection and quantification of X. albilineans using TaqMan probe and primers targeting a putative adenosine triphosphate¿binding cassette (ABC) transporter gene (abc). The novel qPCR assay was highly specific to the 43 tested X. albilineans strains belonging to different pulsed-field gel electrophoresis groups. The detection thresholds were 100 copies/µl of plasmid DNA, 100 fg/µl of bacterial genomic DNA, and 100 CFU/ml of bacterial suspension prepared from pure culture. This qPCR assay was 100 times more sensitive than a conventional PCR assay. The pathogen was detected by qPCR in 75.1% (410/546) of symptomless stalk samples, whereas only 28.4% (155/546) of samples tested positive by conventional PCR. Based on qPCR data, population densities of X. albilineans in symptomless stalks of the same varieties differed between two sugarcane production areas in China, Beihai (Guangxi Province) and Zhanjiang (Guangdong Province), and no significant correlation between these populations was identified. Furthermore, no relationship was found between these populations of the pathogen in asymptomatic stalks and the resistance level of the sugarcane varieties to leaf scald. The newly developed qPCR assay proved to be highly sensitive and reliable for the detection and quantification of X. albilineans in sugarcane stalks.

Documents associés

Article (a-revue à facteur d'impact)

Agents Cirad, auteurs de cette publication :