Publications des agents du Cirad

Cirad

Towards better estimates of carbon stocks in Bornean logged-over Dipterocarp forests

Rozak A.H.. 2018. Montpellier : AgroParisTech; University of Copenhagen, 181 p.. Thèse de doctorat -- Ecologie, évolution, ressources génétique, paléobiologie.

Tropical forests are a major reservoir of biodiversity and carbon (C), playing a pivotal role in global ecosystem function and climate regulation. However, most of the tropical forests, especially Bornean forests in Southeast Asia, are under intense pressure and threatened by anthropogenic activities such as logging, mining industry, agriculture and conversion to industrial plantation. In 2010, the area of production forests in Borneo was 26.8 million ha (approx. 36% of the total land area of Borneo) including 18 million ha (approx. 24%) of logged forests. Production forests are thus emerging as a dominant land-use, playing a crucial role in trading-off provision of goods and maintenance of ecosystem services, such as C and biodiversity retention. Selective logging is known to reduce both above- and below-ground biomass through the removal of a few large trees, while increasing deadwood stocks through collateral damages. By creating large gaps in the canopy, microclimates in the understory and on the forest floor change locally speeding up the decomposition of litter and organic matter. The extent of incidental damages, canopy openness, as well as the speed of C recovery, was shown to be primarily related to logging intensity. However, empirical evaluations of the long-term effect of logging intensity on C balance in production forests remain rare. The present thesis aims to assess the long-term effect of logging intensity on C sequestration in a north Bornean Dipterocarp forests (Malinau District, North Kalimantan) logged in 1999/2000. Five main C pools, namely above-ground (AGC) and below-ground (BGC) carbon in living trees, deadwood, litter, and soil organic carbon (SOC) were estimated along a logging intensity gradient (ranging from 0 to 57% of initial biomass removed). Our result showed that total C stocks 16 years after logging, ranged from 218-554 Mg C ha-1 with an average of 314 Mg C ha-1. A difference of 95 Mg C ha-1 was found between low logging intensity

Mots-clés : forêt tropicale humide; dipterocarpaceae; exploitation forestière; biomasse aérienne des arbres; bois mort; matière organique du sol; carbone organique du sol; bornéo

Documents associés

Thèse