Survey on the chemical composition of several tropical wood species
Gérard J., Paradis S., Thibaut B.. 2019. Bois et Forêts des Tropiques, 342 : p. 79-91.
DOI: 10.18167/DVN1/U1FTIU
Variability in the chemical composition of 614 species is described in a database containing measurements of wood polymers (cellulose, lignin and pentosan), as well as overall extraneous components (ethanol-benzene, or hot water extracts and ash, with a focus on silica content). These measurements were taken between 1945 and 1990 using the same standard protocol. In all, 1,194 trees belonging to 614 species, 358 genera and 89 families were measured. At species level, variability (quantified by the coefficient of variation) was rather high for density (27%), much lower for lignin and cellulose (14% and 10%) and much higher for ethanol/benzene extractives, hot water extractives and ash content (81%, 60% and 76%). Considering trees with at least five different specimens, and species with at least 10 different trees, it was possible to investigate within-tree and withinspecies variability. Large differences were found between trees of a given species for extraneous components, and more than one tree should be needed per species. For density, lignin, pentosan and cellulose, the distribution of values was nearly symmetrical, with mean values of 720 kg/m3 for density, 29.1% for lignin, 15.8% for pentosan, and 42.4% for cellulose. There were clear differences between species for lignin content. For extraneous components, the distribution was very dissymmetrical, with a minority of woods rich in this component composing the high value tail. A high value for any extraneous component, even in only one tree, is sufficient to classify the species in respect of that component. Siliceous woods identified by silica bodies in anatomy have a very high silica content and only those species deserve a silica study.
Mots-clés : bois; composition chimique; silice; banque de données
Documents associés
Article (a-revue à facteur d'impact)
Agents Cirad, auteurs de cette publication :
- Gérard Jean — Persyst / UPR BioWooEB