Dataset of visible-near infrared handheld and micro-spectrometers – comparison of the prediction accuracy of sugarcane properties
Zgouz A., Héran D., Barthès B., Bastianelli D., Bonnal L., Baeten V., Lurol S., Bonin M., Roger J.M., Bendoula R., Chaix G.. 2020. Data in Brief, 31 : 6 p..
In the dataset presented in this article, sixty sugarcane samples were analyzed by eight visible / near infrared spectrometers including seven micro-spectrometers. There is one file per spectrometer with sample name, wavelength, absorbance data [calculated as log10 (1/Reflectance)], and another file for reference data, in order to assess the potential of the micro-spectrometers to predict chemical properties of sugarcane samples and to compare their performance with a LabSpec spectrometer. The Partial Least Square Regression (PLS-R) algorithm was used to build calibration models. This open access dataset could also be used to test new chemometric methods, for training, etc.
Mots-clés : spectrométrie; saccharum; spectroscopie infrarouge; propriété physicochimique; analyse de données; spectroscopie dans l'infrarouge proche; spectromètre
Documents associés
Article (b-revue à comité de lecture)
Agents Cirad, auteurs de cette publication :
- Bastianelli Denis — Es / UMR SELMET
- Bonnal Laurent — Es / UMR SELMET
- Chaix Gilles — Bios / UMR AGAP