Synthesising results of meta-analyses to inform policy: A comparison of fast-track methods
Makowski D., Catarino R., Chen M., Bosco S., Pérez-Soba M., Schievano A., Tamburini G.. 2024. Environmental Evidence, 12 (16) : 14 p..
Statistical synthesis of data sets (meta-analysis, MA) has become a popular approach for providing scientific evidence to inform environmental and agricultural policy. As the number of published MAs is increasing exponentially, mul- tiple MAs are now often available on a specific topic, delivering sometimes conflicting conclusions. To synthesise several MAs, a first approach is to extract the primary data of all the MAs and make a new MA of all data. However, this approach is not always compatible with the short period of time available to respond to a specific policy request. An alternative, and faster, approach is to synthesise the results of the MAs directly, without going back to the primary data. However, the reliability of this approach is not well known. In this paper, we evaluate three fast-track methods for synthesising the results of MAs without using the primary data. The performances of these methods are then compared to a global MA of primary data. Results show that two of the methods tested can yield similar conclusions when compared to global MA of primary data, especially when the level of redundancy between MAs is low. We show that the use of biased MAs can reduce the reliability of the conclusions derived from these methods.
Mots-clés : méthode statistique; politique agricole; statistiques agricoles
Documents associés
Article (a-revue à facteur d'impact)
Agents Cirad, auteurs de cette publication :
- Chen Mathilde — Bios / UMR PHIM